Version control with

O git

Marie-Hélene Burle

training@westgrid.ca

September 11, 2020

Lunch Break

© Why version control?

O Git -

© Exploring the past
© Configuration ;

© Undoing
O Documentation

© Troubleshooting & getting help Break

© Recording history

O Remotes

Break © Collaborating

© Working with branches

1.2

oRID

(]
®
@
-~
0

8
x
®

budget estimation final vl.l-ow.xlsx
OR

budget estimation last version 2.xlsx
OR

Why version

budget estimation 2012 10 25 ready new.xlsx ?

control?

VERSION CONTROL
from Geek#€sPoke

2.1

Why version control?

A sophisticated form of backup

NOT SO LONG AGO.
IN A GALAXY CLOSE BY-

NOT THIS STUPID
'SUN BATTLE' THING

HEY GEORGE AGAIN-.

\
WHAT'S OP?

VERSION CON-WHAT?

IT'S NOT STOPID!
- YOUR STL}F'I'D

OH WELL..

DELETED ANOTHER YOU HAD IT ALL
There are two kinds of people: those Pavoscap- conTeol e

who do their backups well and those

who will.

B iﬁ

Y

from smutch

2.2

Why version control?

“FINAL.doc

4

But much more

ﬁ
INAL _rev.6.COMMENTS.d FINAL _rev.8.commentsS.
FINALrev.6 HiSeoe CORRECTIONS. doc

JORGE CHAM © 2012

FINAL _rev.18.comments?. FINAL rev.22.commentad9.
correclions?.MORE.30.doC ¢orrections.10. #@$%WHYDD

WWW.PHDCOMICS.COM

2.3

STGRID

Gi1t

® Git ® Apache Subversion Mercurial @ Concurrent Versions System

- Note
1 Jan 2004 1 Aug 2009 1 Mar 2015

from Google Trends

3.1

<&@ WEST:R1D Git

Git is an open source distributed version control system (DVCS) created in 2005 by Linus Torvalds for the

versioning of the Linux kernel during its development.

In distributed version control systems, the full history of projects lives on everybody's machine—as opposed to

being only stored on a central server as was the case with centralized version control systems CVCS. This

allows oftline work, huge speedups, easy branching, and multiple backups. DVCS have taken over CVCS.

Git is extremely powerful and has strong branching capabilities. Since the early 2010s, it has become the most

popular DVCS, increasingly rendering other systems quite marginal.

3.2

--I"*J

All commands start with git.

A typical command is of the form:

it <command> [flags] [arguments]

Example:

We already saw the following:

g1t config —--global "Your Name"

3.3

STGRID

Configuration

Configuration

Global configuration

From anywhere, with the --global flag.

There are a number of configurations necessary to set before starting to use Git.

4.2

EST;RID Configuration

Global configuration

Set the name and email address that will appear as signature of your commits:

g1t config —-—-global user.name "Your Name"

git config --global user.email "your@email"

4.3

Configuration

Global configuration

Set the text editor you want to use with Git:

git config --global core.editor "editor" # e.g. "nano'", "vim", "emacs"

4.4

Configuration

Global configuration

Format line endings properly:

g1t config —-—-global core.autocrlf 1nput # 1f you are on macOS or Linux

g1t config —--global core.autocrlf true # 1f you are on Windows

4.5

Configuration

Global configuration

To see your current configuration:

git config —--list

4.6

EST;RID Configuration

Project-specific configuration

You can set configurations specific to a single repository (e.g. maybe you want to use a different email address

for a certain project).

In that case, make sure that you are in the repository you want to customize and run the command

without the --global flag.

Example:

cd /path/to/project

g1t config user.email "your_other@email"

4.7

STGRID

Documentation

Documentation

Man pages

You can access the man page for a git command with either of:

g1t <command> --help
g1t help <command>

man git-<command>

Note:

Throughout this workshop, I will be using < and > to indicate that an expression needs to be replaced by the

appropriate expression (without those signs).

5.2

Documentation

Man pages

Example:

In 1 1' man git-commit

5.3

Documentation

Command options

To get a list of the options for a command, run:

g1t <command> -h

5.4

E S'E; RID Documentation

Command options

Example:

In []: git commit -h

5.5

S'E; RID Documentation

Resources

Official Git manual

Git Software Carpentry lesson

Git tutorial by Atlassian

WestGrid Summer School 2020 Git course

WestGrid workshop "Collaborating through GitHub'
WestGrid workshop "Contributing to GitHub projects”

5.6

ST3RID

THISIS GIT. IT TRACKS COLLABORATIVE. LIORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. IMODEL.

(COOL. HOU DO LE.USE. IT7
NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE. THEM TO SYNC VP

IF YOU GET ERRORS, SAVE YOUR WORK
ELSELHERE, DELETE THE. PROJECT,

Troubleshooting AND DOUNLOAD A FRESH COPY.

Getting help \
=i

6.1

Troubleshooting & getting help

"Listen" to Git!

Git is extremely verbose: by default, it will return lots of information. Read it!
These messages may feel overwhelming at first, but:
© they will make more and more sense as you gain expertise

© they often give you clues as to what the problem is

© even if you don't understand them, you can use them as Google search terms

6.2

Troubleshooting & getting help

(Re-read) the doc

As I have no memory, I need to check the man pages all the time. That's ok! It is quick and easy.

For more detailed information and examples, I really like the Official Git manual.

6.3

ST:RID Troubleshooting & getting help

Search online

© Google
O WestGrid workshop: "Collaborating through GitHub’
© Stack Overflow |git| tag

6.4

oRID

Don't panic
Be analytical

[t is easy to panic and feel lost if something doesn't

work as expected.

Take a breath and start with the basis:

° make sure you are in the repo (pwd) and the
files are where you think they are (1s -a)

~ inspect the repository (git status, git
diff, git log) Make sure not to overlook
what Git is "telling’ you there

Commit and push often to be safe.

Troubleshooting & getting help

IN CASE OF FIRE ¢/

o git commit
19 git push

_7;- git -tf out

from jscript

6.

5

Recording history

Recording history

Create the project root

1. Navigate to the location where you want to create your project.
2. Create a new directory with the name of your project.

Never use spaces in names and paths.

In [1+ pwd
In [1t ¢d ~/parvus/ptmp
In [1+ pwd
In []! 1s
In [11 mkdir ocean_temp

7.2

In []! 1s

Recording history

Put the project under version control

Make sure to enter your new directory before initializing version control.

A classic mistake leading to lots of confusion is to run git -init outside the root of the project.

In [T+ pwd

InT 1t cd ocean_temp
In [15 pwd

In []I 1s -a

In [11 git qnit

In [1+ 1s -3

7.3

--l""_-r‘,

—
o

r"estrio - Put the project under version contro] Recording bistory

Make sure to enter your new directory before initializing version control.

A classic mistake leading to lots of confusion is to run git {init outside the root of the project.

In [T+ pwd

In [It cd ocean_temp
In [1+ pwd

In [11 1s -2

In [11 gt dnit

In []I 1s -a

In[]: 1s -a .git

In []1: git status

7.3

Under the hood

Working directory Staging area History

7.4

Under the hood

Working directory Index History

7.5

Under the hood

Outside .qgit/ .git/index .git/objects

7.6

Under the hood

Working directory Index History

7.7

Under the hood

Working directory Index HEAD

7.8

Under the hood

7.9

Under the hood

7.10

Under the hood

Working directory Index HEAD

7.1

Under the hood

Sandbox Index HEAD

7.12

Recording history

Add first file

Note: Git—which is such a powerful tool—works on any text files.
If you write your manuscript as a text file (e.g. .org, .md, .Rmd, .txt, .ipynb) rather than a MS Word or

LibreOffice Writer file, you can put it under version control.

This has countless advantages, from easy versioning to easy collaboration.

In [It echo "dimport numpy as np

years = Llist(range(2001, 2020))" > src/enso_model.py

In [11 tree

In [11 git status

ST:RID Recording history

Create a sensible project structure

In [11 mkdir src result ms data
Inl1: 1s -a
In [11 tree

In [11 g9t status

7.13

Under the hood

Working directory Index HEAD

7.15

Recording history

Stage our file

In [11 git add .

In [11 git status

7.16

Under the hood

Working directory Index HEAD

717

ST:RID Recording history

Create a first snapshot (the initial commit)

In [1: git commit -m "Initial commit"

In [11 git status

7.18

Under the hood

Working directory Index HEAD

7.19

S'E;Rl D Under the hood

24duu’|

Snapshot

7.20

Recording history

SHA-1checksum

Each commit is identified by a unique 40-character SHA-1 checksum. People usually refer to it as a “hash”.
The short form of a hash only contains the first 7 characters, which is generally sufficient to identify a commit.

After you committed, Git gave you the short form of the hash of your first commit.

7.21

e
~oa JWES-[SRI D Recording history

On writing good commit
messages © Use the present tense

© The first line is a summary of the commit and

COMMENT is less than 50 characters long

CREATED MAIN LOOP & TIMING CONTROL.

Sﬂ‘gg'-m C?:?SG FILE PARSING O Leave a blank line below

CODE ADDITIONS/EDITS

m% © Then add the body of your commit message

with more details

AS A PROJECT DRAGS ON, MY GIT COMMIT
MESSAGES GET LESS AND LESS INFORMATIVE.

from xkcd.com

7.22

Recording history

© Use the present tense Example of a good commit message:
© The first line is a summary of the commit and git commit -m "Reduce boundary conditions by a
is less than 50 characters long factor of 0.3

O Leave a blank line below
Update boundaries

© Then add the body of your commit message Rerun model and update table

with more details Rephrase method section in ms"

7.23

Recording history

Let's make changes to our file

In [1: emacsclient -c src/enso_model.py # Replace 'emacsclient -c' by your text editor of choice

In [11 git status

7.24

Under the hood

Working directory Index HEAD

7.25

Recording history

Stage our file again

In [11 git add .

In [11 git status

7.26

Under the hood

Working directory Index HEAD

7.27

Recording history

Create a second commit

In []: g1t commit -m "Modify enso script"

In [11 git status

/.28

Under the hood

Working directory Index HEAD

7.29

S'[;Rl D Under the hood

24duui 31fukv

Snapshot Snapshot

7 .30

Recording history

Excluding from version control

There are files you really should put under version control, but there are files you shouldn't.

Put under vc Do not put under vc
O Scripts © Non-text files (e.g. images, office documents)
© Manuscripts and notes © Qutputs that can be recreated by running

O Makefile and the like code

7 .31

Recording history

Excluding from version control

You want to have a clean working directory, so you need to tell Git to ignore those files.

You do this by adding them to a file that you create in the root of the project called .gitignore.

In [1 touch result/graph.png

In [1! tree

In [I+ git status

In [It echo /result/ > .gitignore
In[17 cat .gitignore

In []: g_lt status 7.32

Recording history

.gitignore rules

Each line in a .gitignore file specifies a pattern.

Blank lines are ignored and can serve as separators for readability.

Lines starting with # are comments.

To add patterns starting with a special character (e.g. #, !), that character needs escaping with \.

Trailing spaces are ignored unless they are escaped with \.

| negates patterns (matching files excluded by previous patterns become included again). However it is not
possible to re-include a file if one of its parent directories is excluded (Git doesn't list excluded directories for

performance reasons). One way to go around that is to force the inclusion of a file which is in an ignored

directory with the option -f.

7.33

Example: git add -f <file>

--I"*J

#WESERIBxample: git add -f <file> Recording history

Patterns ending with / match directories. Otherwise patterns match both files and directories.

/ at the beginning or within a search pattern indicates that the pattern is relative to the directory level of the

.gitignore file. Otherwise the pattern matches anywhere below the .gitignore level.

Examples:

- foo/bar/ matches the directory foo/bar, but not the directory a/foo/bar
- bar/ matches both the directories foo/bar and a/foo/bar

+ matches anything except /.
? matches any one character except /.
The range notation (e.g. [a-zA-Z]) can be used to match one of the characters in a range.
A leading *x/ matches all directories.
Example: x*/foo matches file or directory foo anywhere. This is the same as foo

A trailing /*x matches everything inside what it precedes.

7.33

<o WE STERI gx amples: Recording history

- foo/bar/ matches the directory foo/bar, but not the directory a/foo/bar

- bar/ matches both the directories foo/bar and a/foo/bar

+ matches anything except /.
? matches any one character except /.
The range notation (e.g. [a-zA-Z]) can be used to match one of the characters in a range.
A leading *x/ matches all directories.

Example: x*/foo matches file or directory foo anywhere. This is the same as foo
A trailing /x* matches everything inside what it precedes.

Example: abc/+* matches all files (recursively) inside directory abc
/x%/ matches zero or more directories.

Example: a/+*/b matches a/b, a/x/b, and a/x/y/b

7.33

Recording history

Tagging

Annotated tag
In [It git tag
In []: g1t tag -a J_Climate_2009 -m "State of project at the publication of paper"
In[1: g9t show J_Climate_2009

In [11 git tag

7 .34

Recording history

Tagging

Leightweight tag
In [1+ git tag J_Climate_2009_light
In [17 git show J_Climate_2009 light

In LIt git tag

7.35

S'[;Rl D Under the hood

24duui 31fukv

Snapshot Snapshot

7 .36

S'[;Rl D Under the hood

24duu’i 31fukv1 3t55tgy yht7831

Snapshot Snapshot Snapshot Snapshot

7.37

S_E; - Recording history

Tagging
Deleting tags

In [17 git tag -d J_Climate_2009_ light

In 117 git tag

7 .38

Recording history

Let's create more selective snapshots

We made our first commit with:

g1t add .

git commit -m "Initial commit"

git add . stages all new changes in the repo.

[t is even possible to commit all changes to the tracked files, staged or not, with git commit -a -m "Some

message" . With this command, you can thus skip the staging area entirely.

While these commands are convenient, you seldom want to do that: chances are, you'd be committing a mixed

bag of changes that aren't grouped sensibly:.

This creates a messy history that will be hard to navigate in the future (and will be hell for your collaborators).

7.39

Recording history

Let's create more selective snapshots

What you want to do is to create commits that are meaningful.

This is why Git has this 2-step process to make snapshots:

O first you stage

© then you commit

The staging area allows you to pick and choose changes that you want to commit together.

7.40

Recording history

Let's create more selective snapshots

git add <file> allows you to only add the changes you made in <file> to the staging area (leaving changes

to other files unstaged).
Even better, git add -p <file> allows you to stage only some of the changes made in <file>.

This gives you entire control over your recording of history:.

7.41

Recording history

Let's create more selective snapshots

git add -p <file> starts an interactive staging session.

For each modified section (called "hunk"), Git will ask you:

y yes (stage this hunk)

N no (don't stage this hunk)

a all (stage this hunk and all subsequent ones 1n this file)
d do not stage this hunk nor any of the remaining ones

S split this hunk (1f possible)

e edit

? print help

In [It g9t status

7.42

In

In

In

In

In

In

s e u _* P
N O 1110y I"I‘IC"‘I'I"I‘I"'Y

echo "# Effect of Enso on SST 1n the North Pacific between the years 2001 and 2020
Introduction

Methods

Results

Conclusion”" > ms/enso_effect.md

g1t status

1t add ms/enso_effect.md

g1t status

g1t commit -m "Add first draft enso effect ms"

g1t status

echo "Twas brillig, and the slithy toves

Did gyre and gimble 1n the wabe:

ALL mimsy were the borogoves,

And the mome raths outgrabe" >> ms/enso_effect.md

7.42

g1t status

In [It echo "Beware the Jabberwock, my son!
The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun
The frumious Bandersnatch" >> src/enso_model.py

In [It g9t status

In 1+ gt add ms/enso_effect.md

In L I+ g9t status

In[1* git commit -m "Add Jabberwock 1st paragraph to the enso effect ms"
In [1+ git status

In []: emacsclient -c ms/enso_effect.md

In [1+ git status

(run;ﬁtnntﬂiy git add -p ms/enso_effect.md 7 42

Recording history

g1t status
In[1' git add src/enso_model.py
In [It git status
In [It git commit -m "Edits intro and conclusion ms

First draft 1ntro Jabberwock
Format conclusion and rephrase last paragraph"

In [11 git status

In[1t git add .gitignore

In [It g9t status

In [It g9t commit -m "Add .gitignore with result dir"
In [It g9t status

In [It g9t commit -a -m "Add methods and result ms" 7.42

g1t status y

In []: g1t commit -a -m "Add methods and result ms"

In [11 git status

In [11 echo "Add content to the ms" >> ms/enso_effect.md
In [11 git status

In [1: git commit -a -m "Minor edits enso model ms"
In[1' echo "Add code to the script" >> src/enso_model.py
In [11 git status

In[1' g9t commit -a -m "Minor edits script"

In [It g9t status

In [I: g9t status

7.42

Recording history

Inspecting changes

We saw that git status is the key command to get information on the current state of the repo.

While this gives us the list of new files and files with changes, it doesn't allow us to see what those changes are.

For this, we need git diff.

git diff shows changes between any two elements (e.g. between commits, between a commit and your

working tree, between branches, etc.).

In [It gt status
In11' echo "Adding some ending to the ms" >> ms/enso_effect.md
In 1]t echo "Adding more code to the script" >> src/enso_model.py

.43

In [It g9t add ms/enso_effect.md |

Under the hood

Working directory Index HEAD

7 .44

Recording history

Inspecting changes

Difference between the working directory and the index

That's all your unstaged changes on tracked files.

Git can see new files you haven't staged: it lists them in the output of git status. Until you put them under
version control by staging them for the first time however, Git has no information about their content: at this

point, they are untracked and they are not part of the working tree yet. So their content never appears in the

output of git diff.

7.45

Under the hood

Working directory Index HEAD

/.46

ST:RID Recording history

In L]0 git diff

7.47

ST:RID Recording history

Inspecting changes

Difference between the index and your last commit

That's your staged changes ready to be committed.

That is, that's what would be committed with git commit -m "Some message".

/.48

Under the hood

Working directory Index HEAD

7.49

ST:RID Recording history

Inl 14 git diff --cached

7 .30

ST:RID Recording history

Inspecting changes

Difference between the working directory and your last commit

So both of the above combined.

That's all your staged and unstaged changes (again, only on tracked files).

7.51

Under the hood

Working directory Index HEAD

7 .92

In

In

In

In

[

[

[

[

] :

] :

] :

] :

oit diff HEAD

echo "Manuscript on long-term acidity change in the Pacific" > ms/acidity.md

g1t status

oit diff HEAD

Recording history

7.

23

Recording history

Inspecting changes

Difference between commits

In [15 git diff HEAD~ HEAD

In [1: git diff HEAD HEAD~

In[1' git rev-parse HEAD

In [1t git rev-parse --short HEAD
In [1t git rev-parse --short HEAD~

In[]+ git diff 265338c 62bfbea

7 .54

Recording history

Inspecting changes

git diff uses a pager (by default, less).

To navigate in the pager:

SPACE scroll one screen down
b scroll one screen up

q ex1t

Type man less and look at the "COMMANDS" section for more info.

You can circumvent the pager.

In [It g9t --no-pager diff HEAD

7.95

git show shows one

In

In

In

In

In

g1t

g1t

g1t

g1t

g1t

show

show

show

show

show

Recording history

Inspecting changes

object. Applied to a commit, shows the log and changes made at that commit.

HEAD
HEAD~
HEAD~2

HEAD~2 --oneline

7.

26

Working with branches

Working with branches

Putting aside for a while (stashing)

Before moving HEAD around (amongst branches or in the past), make sure to have a clean working

directory.

[f you aren't ready to create a commit (messy, unfinished changes, etc.), you can stash those changes and

retrieve them later.

In[1: git status

In []: g1t stash -u # -u to tnclude untracked files
In 1 I+ git status

In [I+ git stash list

In [1t git stash apply --index # --index to restage the files that were staged before 3.2

--l""_,-rl

‘;;;"V\fhseﬁtﬁ ﬁX ' Working with branches

[f you aren't ready to create a commit (messy, unfinished changes, etc.), you can stash those changes and

retrieve them later.

In[1+ git status

In []: g1t stash -u # -u to tnclude untracked files

In I I* git status

In[1+ git stash list

In'[I+ git stash apply --index # --index to restage the files that were staged before
In [1+ git stash drop # delete the stash

In[1+ git stash list

In [11 gt stash -u

In []1: git status

8.2

Working with branches

Putting aside for a while (stashing)

A few notes:

© You can apply a stash on a dirty directory

© You can apply a stash on another branch

© You can apply and drop a stash in one command with git stash pop, but the --index option is not
available

© You can have several stashes. In that case, Git always assumes you want to perform an action on the
last one. If that is not the case, you have to provide the name of the stash you want to use (e.g. git

stash apply stash@{1l} . You can find that name with git stash list)

8.3

Working with branches

Creating branches

"master"

When you initialized your repository with git init, a branch got created. It is called master (you could

rename it to something else if you wanted—that initial branch, despite its name, has nothing special).

So as soon as you start working on your project, there is one branch (master) and you are on it.

8.4

Working with branches

Creating branches

Additional branches

You can create additional branches with git branch <branch-name>.

In [11 git branch
In [11 git branch test
In []1: git status

In [11 git branch

8.5

S'[;Rl D Under the hood

24duu’i 31fukv1 3t55tgy yht7831

Snapshot Snapshot Snapshot Snapshot

8.6

S'[;Rl D Under the hood

S & @§

8.7

ES'[;Rl D Under the hood

SO & %

8.8

Working with branches

Switching branch

To switch branch, you use git checkout <branch-name>.

In [17 git checkout test
In []: git status

In [11 g9t branch

8.9

ES'[;Rl D Under the hood

SO & %

8.10

ES'[;Rl D Under the hood

SO & g

?JWESERI D Working with branches

Creating a branch & switching to it immediately

When you create a branch, most of the time you want to switch to it. So there is a command which allows to

create a branch and switch to it immediately without having to do this in two steps: git checkout -b

<branch—-name>.

This command is convenient: when you create a branch with git branch <branch-name>, it is very easy to

forget to switch to the new branch before making commits!

In [11 git checkout -b dev
In []: git status

In [1t git branch

8.12

In

In

In

In

In

In

In

In

In

Working with branches

Creating commits on the new branch

g1t checkout test

touch src/acidity.py

g1t status

g1t add src/acidity.py

g1t status

g1t commit -m "Add new acidity script"
g1t status

echo "Some content" >> src/acidity.py

o1t <ctatic

13

In

In

In

In

In

In

In

In

In

In

g1t status

git commit -a -m "Add some content to acidity script"

g1t status

ls src/

tree

g1t checkout master

g1t status

ls src/

tree

g1t checkout test

ls src/

tree

13

ES'[;Rl D Under the hood

SO & g

8.14

S'[;Rl D Under the hood

8.15

ES'E;Rl D Under the hood

eluuyad

8.16

ES'E;Rl D Under the hood

eluuyad

8.17

ES'E;Rl D Under the hood

eluuyad

8.18

EST;RID Working with branches

Comparing branches

In [11 git diff test master
In [11 git diff master test

In [It git diff dev master

8.19

.-"J#"
v

o 4
WESTZRID

Working with branches

Merging branches

One thing that makes Git branches powerful is—as
. - ALGORITHMS
we just saw—how easy it is to create new branches BY (OMPLEXITY
d itch f branch her. Anoth ol e S .

and to switch irom one branch to another. Another P A -

thing is how easy it is to merge branches together. ERE DR oeron R oo . NEBEh T
COORDINATE THEIR SCHEDULING

[f you created an experimental branch and are happy from xked.com

with the result, you'll want to merge it into your

main branch.

First, switch to the main development branch, then

merge your experimental branch into the main

branch:

g1t merge <branch-to-merge-into-current-branch>

ST:RID Working with branches

Merging branches

Fast-forward merge

In[1* g9t branch

In [It g9t checkout master
In []: git status

InT1: git merge test

In []1: git status

8 .21

ES'E;Rl D Under the hood

eluuyad

8 .22

ES'E;Rl D Under the hood

eluuyad

8.23

ES'E;Rl D Under the hood

8.24

Working with branches

Deleting branches

Once you have merged a branch into another or if you decide that the experiments on a branch are not worth

keeping, you can delete that branch.

To do so, we could run git branch -d test, but we will keep it for now as it will be useful later on.

ES'E;Rl D Under the hood

8 .26

ES'E;Rl D Under the hood

Scoooe

8.27

Working with branches

Merging branches

Merge commit

In 1]t g9t branch test2

In 1]t g9t checkout test2

In [11 echo "Some edits to the enso ms" >> ms/enso_effect.md
In 1]t git commit -a -m "Edit enso ms"

In [It git checkout master

In [11 echo "Add some code to the script" >> src/enso_model.py

In [17 git commit -a -m "Add code enso script"

—” 4

==

e > Vﬁ ﬁg Commlt Working with branches

‘ In 1]t git branch test2
In 11t git checkout test2
In [11 echo "Some edits to the enso ms" >> ms/enso_effect.md
In1]* git commit -a -m "Edit enso ms"
In [1t git checkout master
In [11 echo "Add some code to the script" >> src/enso_model.py
In I']* git commit -a -m "Add code enso script"
In [It git merge test2
In []:

git branch -d test2 (not run because I will use 1t later)

S'[;Rl D Under the hood

S & @§

8.29

Under the hood

SO & %

8 .30

Under the hood

S &

8. 31

ES'[;Rl D Under the hood

8 .32

Under the hood

vht7831

8.33

Under the hood

vht7831

8 .34

Under the hood

vht7831

8.35

S'[;Rl D Under the hood

yht7831 @4 edrtydu

8 .36

S'[;Rl D Under the hood

2haotqr

vht7831 @4 edrty8u 4153e18

8.37

S'[;Rl D Under the hood

2haotqr

vht7831 @4 edrty8u 4153e18

Working with branches

Merge conflicts

As you were developing your experimental branch, maybe you were also developing your main branch. As long

as the differences between the branches do not overlap (you have been working on different parts of the

project in each branch, which can include different parts of the same file), there is no problem.

[f the two branches contain different versions of the same part of a file however, Git cannot know which of the

versions you want to keep. The merge will then be interrupted and Git will ask you to resolve the conflict(s)

before the merge can be completed.

Conflicts will look like this:

<< HEAD

Version of this section of the file on your checkedout branch

Alternative version of the same section of the file

>>>>>>> alternative version

8 .39

In

In

In

In

In

In

In

In

In

Merge conflicts

g1t checkout -b test3

emacsclient -c ms/enso_effect.md

g1t status

1t add ms/enso_effect.md

g1t commit -m "Make some edits enso ms"
g1t status

g1t checkout master

emacsclient -c ms/enso_effect.md

g1t status

Working with branches

8

.40

git commit -m "Make some edits enso ms" >

In [11 git status

In [11 git checkout master

In [11 emacsclient -c ms/enso_effect.md

In [1t git status

In[1: it add ms/enso_effect.md

In [']t git commit -m "Make conflicting edits enso ms"
In [1* git status

In [1t git checkout master

In[1t git merge test3

In []: g1t status

8 .40

Working with branches

Resolving conflicts

Merge tools allow you to jump from conflict to conflict within a file and ask you to decide which version you

want to choose for each of them (you can also write a combination of the two).

In [11 git mergetool

In [1' git mergetool --tool-help

8.41

Working with branches

Resolving conflicts

[f you don't use any merge tool, you can edit those sections manually in any text editor.

You can also in one swoop keep our version (i.e. the version of the branch you are currently on or HEAD) or

all of their version (the alternative version of the file you are merging into your branch) for all of the sections.

g1t checkout --ours <file>

g1t checkout —--theirs <file>

In [I emacsclient -c ms/enso_effect.md
In []t git status
In' 1t g9t add ms/enso_effect.md

In L It g9t commit 8.42

Exploring the past

ST:RID Exploring the past

Overview of commit history

git log shows the log of commits.

In its simplest form, it gives a list of past commits in a pager.

In 1 It git log

9.2

Exploring the past

Overview of commit history

This log can be customized greatly by playing with the various flags.

In [It o9t log --oneline

In [It man git-log

9.3

EST;RID Exploring the past

Overview of commit history

You can make it really clean and fancy:

git log \
-—graph \
-—date-order \
-—date=short \
-—pretty=format:'%C(cyan)%h %C(blue)%ar %C(auto)%d'"

" '%C(yellow)%s%+b %C(magenta)%ae'

9.4

ST:RID Exploring the past

Overview of commit history

Or you can make it as a graph.

In [1+ git log --graph

In []: git log --graph —--all

9.5

Exploring the past

Revisiting old commits

g1t checkout <commit-hash>

You can also use tags:

g1t checkout <tag-name>

In [11 git checkout xxxx

In [11 git checkout master

9.6

ES'E;Rl D Under the hood

S & @§

9.7

ES'E;Rl D Under the hood

9.8

ES'E;Rl D Under the hood

S & @§

9.7

Exploring the past

Detached HEAD

Dangerous workflow

In'[1" g9t checkout xxxx

In [I: echo "lala" >> ms/enso_effect.md

In[1: git status

In []: g1t commit -a -m "Exploration from commit xxx"
In []t git status

In [11 echo "tutut" >> ms/enso_effect.md

In[I git commit -a -m "Another commit on that branch" g it

“?:W U etacnea -l_lb AU Exploring the past

ESTZRID

Dangerous workflow

In 1 1* g9t checkout xxxx

In [I: echo "lala" >> ms/enso_effect.md

In[1: git status

In T 1' git commit -a -m "Exploration from commit xxx"
In []t git status

In [1T echo "tutut" >> ms/enso_effect.md

In []: g1t commit -a -m "Another commit on that branch"
In 1 It git status

In [It g9t checkout master -

ES'E;Rl D Under the hood

S & @§

ES'E;Rl D Under the hood

9.12

S'[;Rl D Under the hood

23f481q

31fukv

9.13

S'[;Rl D Under the hood

23f481q

31fukv1

9.14

S'[;Rl D Under the hood

23f481q

31fukv

9.15

Detached HEAD

Safe approach

In

In

In

In

In

In

In

[

] :

g1t checkout XXXxXx

echo "lala" >> ms/enso_effect.md

g1t status

git commit -a -m "Exploration from commit xxx"

echo "tutut" >> ms/enso_effect.md

g1t commit -a -m "Another commit on that branch"

g1t status

Exploring the past

9.

16

Exploring the past

In 11" g9t checkout xxxx

In [It echo "lala" >> ms/enso_effect.md

In [It git status

In [1t git commit -a -m "Exploration from commit xxx"
In [17 echo "tutut" >> ms/enso_effect.md

In []: g1t commit -a -m "Another commit on that branch"
In 1 It g9t status

In['I* git checkout -b alternative

In 1 I* git status

In [11 git checkout master

ES'E;Rl D Under the hood

S & @§

9.17

ES'E;Rl D Under the hood

9.18

S'[;Rl D Under the hood

23f481q

31fukv

9.19

S'[;Rl D Under the hood

23f481q

31fukv1

9.14

Under the hood

23f481q

31fukv

9.21

Under the hood

23f481q

31fukv

9.22

Exploring the past

Detached HEAD

How to recover if you loose commits?

Do this as soon as you can as the commits which are not on a branch will be deleted at the next

garbage collection.

In[1t gt reflog

In [It ot checkout xxxx

In [It o9t checkout -b new_branch

Undoing

Codes

Safe

You can do this safely at any time as you can always go back to where you were before doing it.

| Data loss

Warning: this involves the loss of some information. Make sure that you do not want that information before
doing this.

I Collaboration

Warning: this should not be done on something you already pushed to a remote when you are collaborating
with others.

10.2

Undoing

Codes

Safe

Workflows with branches and git revert are safe. They can make for tortuous and messy histories however.

| Data loss
Information can be lost when you:
discard uncommitted work,

let the garbage collection eliminate commits that are not on a branch,

discard stashes that haven't been reapplied.

In any of these situations, make sure you really don't want to keep that data in your history.

| Collaboration

Whenever you touch at commits, there is a potential for messing up the workflow of collaborators.

Best to keep these for local work.

For local work (before pushing to a remote) however, they allow to fix horrible histories.

10.3

Undoing

Reverting Safe

The working directory must be clean.

Create a new commit which reverses the effect of past commit(s).

In [It o9t log --graph --oneline

In1'1" echo "Add line before reverting" >> ms/enso_effect.md
In [It g9t commit -a -m "Add test line"

In [It o9t log --graph --oneline

In 11t cat ms/enso_effect.md

In 1]t git revert HEAD~ 10.4

;;?‘w Uég%;; .;1 Duwv CULLLLLLIL WILICLL 1UVALOUS UL LLICLL UL Padt LUl |3). Undoing
In [It g9t log --graph --oneline
In1']t echo "Add line before reverting" >> ms/enso_effect.md
In [It g9t commit -a -m "Add test line"
In []: git log --graph --oneline
In 11t cat ms/enso_effect.md
In[']+ git revert HEAD~
In [1+ git log --graph --oneline
In [It cat ms/enso_effect.md
In[]+ git checkout HEAD~

In [1+ git checkout -b new_start

10.4

SGRID Undoing

Gi1t reset

10.5

S'[;Rl D Under the hood

24duu7i 31fukv1 3f55tgy

10.6

Under the hood

Working directory Index HEAD

10.7

SGRID Undoing

git reset --soft HEAD~2

10.8

S'[;Rl D Under the hood

24duui 31fukv

3f55tgy

10.9

Under the hood

Working directory Index HEAD

10.10

Under the hood

12d4qi

24duui 31fukvl g

10. 11

S'[;Rl D Under the hood

24duu7i 31fukv1 3f55tgy

10.6

Under the hood

Working directory Index HEAD

10.13

SGRID Undoing

git reset HEAD~2

10. 14

S'[;Rl D Under the hood

24duui 31fukv

3f55tgy

10.15

Under the hood

Working directory Index HEAD

10.16

SGRID Undoing

git reset --hard HEAD~2

10. 17

Under the hood

Working directory Index HEAD

10. 18

Under the hood

Working directory Index HEAD

10. 20

Under the hood

Working directory Index HEAD

10 . 21

Under the hood

Working directory Index HEAD

10. 22

Under the hood

Working directory Index HEAD

10. 23

SGRID Undoing

git reset --soft HEAD~2

10. 24

S'[;Rl D Under the hood

24duui 31fukv

3f55tgy

10.25

Under the hood

Working directory Index HEAD

10. 26

SGRID Undoing

git reset HEAD~2

10. 27

Under the hood

Working directory Index HEAD

10. 28

SGRID Undoing

git reset --hard HEAD~2

10. 29

Under the hood

Working directory Index HEAD

10. 30

Under the hood

Working directory Index HEAD

10 . 31

SGRID Undoing

git reset --soft HEAD

10. 32

S'[;Rl D Under the hood

24duu7i 31fukv1 3f55tgy

10.6

Under the hood

Working directory Index HEAD

10 . 34

SGRID Undoing

git reset HEAD

10.35

Under the hood

Working directory Index HEAD

10. 36

SGRID Undoing

git reset --hard HEAD

10. 37

Under the hood

Working directory Index HEAD

10. 38

SGRID Undoing

Undoing the last commit !Collaboration

g1t reset —--soft HEAD~

In []:

SGRID Undoing

Undoing several commits
(while keeping the changes staged)
| Collaboration

g1t reset --soft HEAD~Xx

In []:

ST:RID Undoing

Restoring the index (unstaging) Safe

Single file:
g1t reset HEAD <file>

All files:

g1t reset HEAD

Note: for versions newer than 2.23, Git suggests using a new command: git restore --staged <file>

See my answer on Stack Overflow for more details.

10 . 41

SGRID Undoing

Undoing the last commit and unstaging
| Collaboration

e1t reset HEAD~

In []:

SGRID Undoing

Undoing several commits and unstaging
| Collaboration

e1t reset HEAD~X

In []:

SGRID Undoing

Throwing away changes since last commit
! Data loss

g1t reset —-—-hard HEAD

In []:

10. 45

SGRID Undoing

Undoing the last commit
& throwing away changes
| Collaboration ! Data loss

g1t reset --hard HEAD~

In []:

SGRID Undoing

Undoing several commits
& throwing away changes
| Collaboration ! Data loss

g1t reset --hard HEAD~x

In []:

-‘4";#’
~&a WE

v

ST:RID Undoing

Throwing away unstaged changes (unmodifying)
! Data loss

Single file:

g1t checkout —-- <file>

All files:

g1t checkout -- .

Note: for versions newer than 2.23, Git suggests using a new command: git restore --staged <file>

See my answer on Stack Overflow for more details.

10 . 48

ST:RID Undoing

Modifying the last commit message
| Collaboration

Inl1' git commit --amend -o

Inl 1t git commit --amend -o -m "Much better commit message"

10.50

ST:RID Undoing

Modifying the last commit
| Collaboration

In [17 git commit --amend

In[17 git commit --amend --no-edit

In[]: git commit --amend -m "New commit message for the replacement commit"

10 . 51

SGRID Undoing

Modifying older commits
| Collaboration

In [It oit rebase -i HEAD~3

STGRID

Remotes

S'E; RID Remotes

What i1s a remote?

Any version of the project that is somewhere else.

"Somewhere else” can be anywhere, including on the same machine.
Usually, remotes are on the internet (on hosting services such as GitHub, GitLab, or Bitbucket) Or On servers.

This allows easy collaboration.

1.2

S-['S RID Remotes

Adding remotes

First, create the remote

1.3

?‘WE S-E; olD Remotes

Adding remotes

Then, add 1t to your project

g1t remote add <remote—-name> <remote-address>

The <remote-address> can be, amongst others, in the form of:

O <user>@<server>:<project>.git for a server with SSH protocol
O gite<hosting-site>:<user>/<project>.git for a web hosting service accessed with SSH address
O https://<hosting-site>/<user>/<project>.git for a web hosting service accessed with HTTPS

address

In []: g1t remote add origin git@gitlab.com:prosoitos/ocean_temp.git

In []: g1t remote add origin https://gitlab.com/prosoitos/ocean_temp.git

1.4

S-['S RID Remotes

Listing remotes

In []1: git remote

In [11 git remote -v

1.5

S-E; RID Remotes

Renaming remotes

g1t remote rename <old-name> <new-name>

In []:

1.6

S-E; RID Remotes

Removing remotes

g1t remote remove <remote—-name>

In []:

1.7

S-['S RID Remotes

Fetching

git fetch <remote-name>

In []:

1.8

S'E; RID Remotes

Pulling (fetching + merging)

g1t pull

In []:

--l""_-r‘,

--‘-'!;iWE S-E; olD Remotes

Pushing

g1t push <remote—-name> <branch—-name>

To associate a branch with a remote, you can run:
g1t push -u <remote—-name> <branch-name>

After which, you will only have to run:
g1t push

(Unless you want to push a new branch. Then you have to associate that new branch to the remote with -u as

Well) .

In []1: git push origin master

In []: eit push 1110

--l""_-r‘,

—
e > ‘WESTaRlD Remotes
- .
To associate a branch with a remote, you can run:

g1t push -u <remote-name> <branch-name>
After which, you will only have to run:
g1t push

(Unless you want to push a new branch. Then you have to associate that new branch to the remote with -u as

well).
In[1+ git push origin master
In [11 git push
In[1 git push -u origin master

In [It g9t push

11.10

S'E; RID Remotes

Pushing tags

Pushing will not push tags to the remote unless you add the --tags tag.

In [It g9t push origin --tags

In [It g9t push origin --delete <tagname>

1.1

GIT PUSH
... REJECTED

GIT PUSH--NO-VERIFY

Collaborating

from crystallize comics

12 .1

Collaborating

Cloning a repo

g1t clone git@<hosting-site>:<user>/<project>.git

g1t clone https://<hosting-site>/<user>/<project>.git

When cloning, the remote is automatically named origin and the main branch is automatically associated with

the remote.

Let's practice with this project.

In []: g1t clone git@gitlab.com:prosoitos/collab.git

12.2

