
Use left/right keys to change slide

Back to workshop page

 Introduction to GIS & Introduction to GIS &
 Spatial Analysis in R Spatial Analysis in R

Marie-Hélène Burle Marie-Hélène Burle
training@westgrid.ca training@westgrid.ca

April 26, 2021 April 26, 2021

https://westgrid-cli.netlify.app/workshops/gis_r_brc/

GIS conceptsGIS concepts

Types of spatial dataTypes of spatial data

Vector dataVector data
Discrete objects

Examples: countries, roads, rivers, towns

Contain: - geometry: shape & location of the objects

 - attributes: additional variables (e.g. name, year, type)

Common �le format: ,

Raster dataRaster data
Continuous phenomena or spatial �elds

Examples: temperature, air quality, elevation, water depth

Common �le formats: , , ,

GeoJSON shape�le

TIFF GeoTIFF NetCDF Esri grid

https://en.wikipedia.org/wiki/GeoJSON
https://en.wikipedia.org/wiki/Shapefile
https://en.wikipedia.org/wiki/TIFF
https://en.wikipedia.org/wiki/GeoTIFF
https://en.wikipedia.org/wiki/NetCDF
https://en.wikipedia.org/wiki/Esri_grid

Vector dataVector data

TypesTypes

point: single set of coordinates

multi-point: multiple sets of coordinates

polyline: multiple sets for which the order matters

multi-polyline: multiple of the above

polygon: same as polyline but �rst & last sets are the same

multi-polygon: multiple of the above

Raster dataRaster data

Grid of equally sized rectangular cells containing values for some variables

Size of cells = resolution

For computing ef�ciency, rasters do not have coordinates of each cell, but the bounding box & the

number of rows & columns

Coordinate Reference Systems (CRS)Coordinate Reference Systems (CRS)
A location on Earth’s surface can be identi�ed by its coordinates & some reference system called

CRS

The coordinates (x, y) are called longitude & latitude

There can be a 3rd coordinate (z) for elevation or other measurement—usually a vertical one

& a 4th (m) for some other data attribute—usually a horizontal measurement

In 3D, longitude & latitude are expressed in angular units (e.g. degrees) & the reference system

needed is an angular CRS or geographic coordinate system (GCS)

In 2D, they are expressed in linear units (e.g. meters) & the reference system needed is a planar

CRS or projected coordinate system (PCS)

DatumsDatums

Since the Earth is not a perfect sphere, we use spheroidal models to represent its surface. Those are

called geodetic datums

Some datums are global, others local (more accurate in a particular area of the globe, but only

useful there)

Examples of commonly used global datums:

WGS84 (World Geodesic System 1984)

NAD83 (North American Datum of 1983)

Angular CRSAngular CRS

An angular CRS contains a datum, an angular unit & references such as a prime meridian (e.g. the

Royal Observatory, Greenwich, England)

In an angular CRS or GCS:

Longitude () represents the angle between the prime meridian & the meridian that passes

through that location

Latitude () represents the angle between the line that passes through the center of the Earth

& that location & its projection on the equatorial plane

Longitude & latitude are thus angular coordinates

λ

ϕ

ProjectionsProjections
To create a two-dimensional map, you need to project this 3D angular CRS into a 2D one

Various projections offer different characteristics. For instance:

some respect areas (equal-area)

some respect the shape of geographic features (conformal)

some almost respect both for small areas

It is important to choose one with sensible properties for your goals

Examples of projections:

Mercator

UTM

Robinson

Planar CRSPlanar CRS

A planar CRS is de�ned by a datum, a projection & a set of parameters such as a linear unit & the

origins

Common planar CRS have been assigned a unique ID called code which is much more

convenient to use

In a planar CRS, coordinates will not be in degrees anymore but in meters (or other length unit)

EPSG

https://en.wikipedia.org/wiki/EPSG_Geodetic_Parameter_Dataset

Projecting into a new CRSProjecting into a new CRS

You can change the projection of your data

Vector data won’t suffer any loss of precision, but raster data will

→ best to try to avoid reprojecting rasters: if you want to combine various datasets which have

different projections, reproject vector data instead

GIS in RGIS in R

Open GIS dataOpen GIS data
 : list of free GIS datasets

BooksBooks
 by Robin Lovelace, Jakub Nowosad & Jannes Muenchow

 by Edzer Pebesma & Roger Bivand

 by Robert J. Hijmans

 by Claudia A. Engel

TutorialTutorial
 by the CDRC

WebsiteWebsite
 by Edzer Pebesma, Marius Appel & Daniel Nüst

CRAN package listCRAN package list

Mailing listMailing list

Free GIS Data

Geocomputation with R

Spatial Data Science

Spatial Data Science with R

Using Spatial Data with R

An Introduction to Spatial Data Analysis and Visualisation in R

r-spatial

Analysis of Spatial Data

R Special Interest Group on using Geographical data and Mapping

https://freegisdata.rtwilson.com/
https://geocompr.robinlovelace.net/
https://keen-swartz-3146c4.netlify.app/
https://rspatial.org/
https://cengel.github.io/R-spatial/
https://data.cdrc.ac.uk/dataset/introduction-spatial-data-analysis-and-visualisation-r
https://www.r-spatial.org/
https://cran.r-project.org/web/views/Spatial.html
https://stat.ethz.ch/mailman/listinfo/r-sig-geo

PackagesPackages

�. Bivand, R.S. Progress in the R ecosystem for representing and handling spatial data. J Geogr Syst (2020). https://doi.org/10.1007/s10109-

020-00336-0

There is now a rich ecosystem of GIS packages in R1

https://rdcu.be/cjceF

Data manipulationData manipulation

Older packagesOlder packages
sp

raster

rgdal

rgeos

Newer generationNewer generation
 : vector data

 : raster data (also has vector data capabilities)

sf

terra

https://github.com/r-spatial/sf
https://github.com/rspatial/terra

MappingMapping

Static mapsStatic maps
ggplot2 + ggspatial

tmap

Dynamic mapsDynamic maps
lea�et

ggplot2 + gganimate

mapview

ggmap

tmap

sfsf

Simple Features in RSimple Features in R

Geospatial vectors: points, lines, polygons

Simple FeaturesSimple Features

 —de�ned by the & formalized by —is

a set of standards now used by most GIS libraries

 is a markup language for representing vector geometry objects according

to those standards

A compact computer version also exists—well-known binary (WKB)—used by spatial databases

The package sp predates Simple Features

sf—launched in 2016—implements these standards in R in the form of sf objects: data.frames (or

tibbles) containing the attributes, extended by sfc objects or simple feature geometries list-

columns

Simple Features Open Geospatial Consortium (OGC) ISO

Well-known text (WKT)

https://en.wikipedia.org/wiki/Simple_Features
https://en.wikipedia.org/wiki/Open_Geospatial_Consortium
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry

sfsf

Useful linksUseful links

6 vignettes: , , , , ,

GitHub repo

Paper

Resources

Cheatsheet

1 2 3 4 5 6

https://github.com/r-spatial/sf
https://journal.r-project.org/archive/2018/RJ-2018-009/index.html
https://r-spatial.github.io/sf/
https://www.rstudio.com/resources/cheatsheets/
https://r-spatial.github.io/sf/articles/sf1.html
https://r-spatial.github.io/sf/articles/sf2.html
https://r-spatial.github.io/sf/articles/sf3.html
https://r-spatial.github.io/sf/articles/sf4.html
https://r-spatial.github.io/sf/articles/sf5.html
https://r-spatial.github.io/sf/articles/sf6.html

sf objectssf objects

sf objectssf objects

sf objectssf objects

sf objectssf objects

sf objectssf objects

sf functionssf functions

Most functions start with st_ (which refers to “spatial type”)

terraterra

Geospatial rastersGeospatial rasters

Faster and simpler replacement for the raster package by the same team

Mostly implemented in C++

Can work with datasets too large to be loaded into memory

terraterra

Useful linksUseful links
GitHub repo

Resources

Full manual

https://github.com/rspatial/terra
https://rspatial.github.io/terra/reference/terra-package.html
https://rspatial.org/terra/index.html

tmaptmap

 GIS maps GIS mapsLayered grammar of graphicsLayered grammar of graphics

http://vita.had.co.nz/papers/layered-grammar.pdf

tmaptmap

Useful linksUseful links

Help pages and vignettesHelp pages and vignettes

GitHub repo

Resources

?tmap-element

vignette("tmap-getstarted")

All the usual help pages, e.g.:

?tm_layout

https://github.com/mtennekes/tmap
https://mtennekes.github.io/tmap/

tmap functionstmap functions

Main functions start with tmap_

Functions creating map elements start with tm_

tmap functioningtmap functioning
Very similar to ggplot2

Typically, a map contains:

One or multiple layer(s) (the order matters as they stack on top of each other)

Some layout (e.g. customization of title, background, margins): tm_layout

A compass: tm_compass

A scale bar: tm_scale_bar

Each layer contains:

Some data: tm_shape

How that data will be represented: e.g. tm_polygons, tm_lines, tm_raster

tmap exampletmap example

tmap exampletmap example

tmap exampletmap example

tmap exampletmap example

tmap exampletmap example

tmap exampletmap example

tmap exampletmap example

tmap exampletmap example

ggplot2ggplot2

The standard in R plotsThe standard in R plots

ggplot2ggplot2

Useful linksUseful links
GitHub repo

Resources

Cheatsheet

https://github.com/tidyverse/ggplot2
https://ggplot2.tidyverse.org/
https://www.rstudio.com/resources/cheatsheets/

ggplot2ggplot2

 allows to plot sf objects (i.e. make maps)geom_sf

https://ggplot2.tidyverse.org/reference/ggsf.html

Let’s work on a projectLet’s work on a project

Let’s work on a projectLet’s work on a project
Retreat of glaciers in North AmericaRetreat of glaciers in North America

DataData
For this workshop, we will use:

the Alaska as well as the Western Canada & USA subsets of the

version 6.01

the 2

the Alaska as well as the Western Canada & USA subsets of the

 3

The datasets can be downloaded as zip �les from these websites

�. RGI Consortium (2017). Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice

Measurements from Space, Colorado, USA. Digital Media. DOI: https://doi.org/10.7265/N5-RGI-60.

�. Fagre, D.B., McKeon, L.A., Dick, K.A. & Fountain, A.G., 2017, Glacier margin time series (1966, 1998, 2005, 2015) of the named glaciers of

Glacier National Park, MT, USA: U.S. Geological Survey data release. DOI: https://doi.org/10.5066/F7P26WB1.

�. Farinotti, Daniel, 2019, A consensus estimate for the ice thickness distribution of all glaciers on Earth - dataset, Zurich. ETH Zurich. DOI:

https://doi.org/10.3929/ethz-b-000315707.

Randolph Glacier Inventory

USGS time series of the named glaciers of Glacier National Park

consensus estimate for the ice

thickness distribution of all glaciers on Earth dataset

http://www.glims.org/RGI/
https://www.sciencebase.gov/catalog/item/58af7022e4b01ccd54f9f542
https://www.research-collection.ethz.ch/handle/20.500.11850/315707

PackagesPackages

Packages need to be installed before they can be loaded in a session

Packages on CRAN can be installed with:

basemaps is not on CRAN & needs to be installed from GitHub thanks to devtools:

install.packages("<package-name>")

install.packages("devtools")

devtools::install_github("16EAGLE/basemaps")

PackagesPackages
We load all the packages that we will need at the top of the script:

library(sf) # spatial vector data manipulation

library(tmap) # map production & tiled web map

library(dplyr) # non GIS specific (tabular data manipulation)

library(magrittr) # non GIS specific (pipes)

library(purrr) # non GIS specific (functional programming)

library(rnaturalearth) # basemap data access functions

library(rnaturalearthdata) # basemap data

library(mapview) # tiled web map

library(grid) # (part of base R) used to create inset map

library(ggplot2) # alternative to tmap for map production

(Truncated code. View the full code at: https://westgrid-slides.netlify.app/r_gis_brc/#/49)

Reading & preparing dataReading & preparing data

Randolph Glacier InventoryRandolph Glacier Inventory

This dataset contains the contour of all glaciers on Earth

We will focus on glaciers in Western North America

You can download & unzip 02_rgi60_WesternCanadaUS & 01_rgi60_Alaska

from the version 6.0Randolph Glacier Inventory

http://www.glims.org/RGI/

Reading in dataReading in data

Data get imported & turned into sf objects with the function sf::st_read:

Make sure to use the absolute paths or the paths relative to your working directory (which

can be obtained with getwd)

ak <- st_read("data/01_rgi60_Alaska")

Reading in dataReading in data

> Output

ak <- st_read("data/01_rgi60_Alaska")

Reading layer `01_rgi60_Alaska' from data source `./data/01_rgi60_Alaska'

 using driver `ESRI Shapefile'

Simple feature collection with 27108 features and 22 fields

Geometry type: POLYGON

Dimension: XY

Bounding box: xmin: -176.1425 ymin: 52.05727 xmax: -126.8545 ymax: 69.35167

Geodetic CRS: WGS 84

Reading in dataReading in data

Your turn:

Read in the data for the rest of north western America (from

02_rgi60_WesternCanadaUS) and create an sf object called wes

First look at the dataFirst look at the data

> Output

ak

Simple feature collection with 27108 features and 22 fields

Geometry type: POLYGON

Dimension: XY

Bounding box: xmin: -176.1425 ymin: 52.05727 xmax: -126.8545 ymax: 69.35167

Geodetic CRS: WGS 84

First 10 features:

 RGIId GLIMSId BgnDate EndDate CenLon CenLat O1Region

1 RGI60-01.00001 G213177E63689N 20090703 -9999999 -146.8230 63.68900 1

2 RGI60-01.00002 G213332E63404N 20090703 -9999999 -146.6680 63.40400 1

3 RGI60-01.00003 G213920E63376N 20090703 -9999999 -146.0800 63.37600 1

(truncated. View the full output at: https://westgrid-slides.netlify.app/r_gis_brc/#/55)

Structure of the dataStructure of the data

> Output

str(ak)

Classes ‘sf’ and 'data.frame': 27108 obs. of 23 variables:

$ RGIId : chr "RGI60-01.00001" "RGI60-01.00002" "RGI60-01.00003" ...

$ GLIMSId : chr "G213177E63689N" "G213332E63404N" "G213920E63376N" ...

$ BgnDate : chr "20090703" "20090703" "20090703" "20090703" ...

$ EndDate : chr "-9999999" "-9999999" "-9999999" "-9999999" ...

$ CenLon : num -147 -147 -146 -146 -147 ...

$ CenLat : num 63.7 63.4 63.4 63.4 63.6 ...

$ O1Region: chr "1" "1" "1" "1" ...

$ O2Region: chr "2" "2" "2" "2" ...

$ Area : num 0.36 0.558 1.685 3.681 2.573 ...

(truncated. View the full output at: https://westgrid-slides.netlify.app/r_gis_brc/#/56)

Inspect your dataInspect your data

Your turn:

Inspect the wes object you created

Glacier National ParkGlacier National Park

This dataset contains a time series of the retreat of 39 glaciers of Glacier National Park, MT, USA

for the years 1966, 1998, 2005 & 2015

You can download and unzip the 4 sets of �les from the USGS website

https://www.sciencebase.gov/catalog/item/58af7022e4b01ccd54f9f542

Read in and clean datasetsRead in and clean datasets

We use dplyr::select because terra also has a select function

create a function that reads and cleans the data

prep <- function(dir) {

 g <- st_read(dir)

 g %<>% rename_with(~ tolower(gsub("Area....", "area", .x)))

 g %<>% dplyr::select(

 year,

 objectid,

 glacname,

 area,

 shape_leng,

(Truncated code. View the full code at: https://westgrid-slides.netlify.app/r_gis_brc/#/59)

Combine datasets into one sf objectCombine datasets into one sf object
Check that the CRS are all the same:

> Output

all(sapply(

 list(st_crs(gnp[[1]]),

 st_crs(gnp[[2]]),

 st_crs(gnp[[3]]),

 st_crs(gnp[[4]])),

 function(x) x == st_crs(gnp[[1]])

))

[1] TRUE

Combine datasets into one sf objectCombine datasets into one sf object

We can rbind the elements of our list:

You can inspect your new sf object by calling it or with str

gnp <- do.call("rbind", gnp)

Estimate for ice thicknessEstimate for ice thickness

This dataset contains an estimate for the ice thickness of all glaciers on Earth

The nomenclature follows the Randolph Glacier Inventory

Ice thickness being a spatial �eld, this is raster data

We will use data in RGI60-02.16664_thickness.tif from the

which corresponds to one of the glaciers (Agassiz) of Glacier National Park

ETH Zürich Research Collection

https://www.research-collection.ethz.ch/handle/20.500.11850/315707

Load raster dataLoad raster data

Read in data and create a SpatRaster object:

ras <- rast("data/RGI60-02/RGI60-02.16664_thickness.tif")

Inspect our SpatRaster objectInspect our SpatRaster object

> Output

nlyr gives us the number of bands (a single one here). You can also run str(ras)

ras

class : SpatRaster

dimensions : 93, 74, 1 (nrow, ncol, nlyr)

resolution : 25, 25 (x, y)

extent : 707362.5, 709212.5, 5422962, 5425288 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=utm +zone=11 +datum=WGS84 +units=m +no_defs

source : RGI60-02.16664_thickness.tif

name : RGI60-02.16664_thickness

Our dataOur data

We now have 3 sf objects & 1 SpatRaster object:

ak: contour of glaciers in AK

wes: contour of glaciers in the rest of Western North America

gnp: time series of 39 glaciers in Glacier National Park, MT, USA

ras: ice thickness of the Agassiz Glacier from Glacier National Park

Making mapsMaking maps

Let’s map our sf object akLet’s map our sf object ak

At a bare minimum, we need tm_shape with the data & some info as to how to represent that data:

tm_shape(ak) +

 tm_polygons()

We need to label & customize itWe need to label & customize it

tm_shape(ak) +

 tm_polygons() +

 tm_layout(

 title = "Glaciers of Alaska",

 title.position = c("center", "top"),

 title.size = 1.1,

 bg.color = "#fcfcfc",

 inner.margins = c(0.06, 0.01, 0.09, 0.01),

 outer.margins = 0,

 frame.lwd = 0.2

(Truncated code. View the full code at: https://westgrid-slides.netlify.app/r_gis_brc/#/69)

Make a map of the wes objectMake a map of the wes object

Your turn:

Make a map with the wes object you created with the data for Western North

America excluding AK

Now, let’s make a map with ak & wesNow, let’s make a map with ak & wes
The Coordinate Reference Systems (CRS) must be the same

sf has a function to retrieve the CRS of an sf object: st_crs

> Output

So we’re good (we will see later what to do if this is not the case)

st_crs(ak) == st_crs(wes)

[1] TRUE

Our combined mapOur combined map

Let’s start again with a minimum map without any layout to test things out:

tm_shape(ak) +

 tm_polygons() +

 tm_shape(wes) +

 tm_polygons()

Uh … oh …

What went wrong?What went wrong?

Maps are bound by “bounding boxes”. In tmap, they are called bbox

tmap sets the bbox the �rst time tm_shape is called. In our case, the bbox was thus set to the bbox

of the ak object

We need to create a new bbox for our new map

Retrieving bounding boxesRetrieving bounding boxes

sf has a function to retrieve the bbox of an sf object: st_bbox

The bbox of ak is:

> Output

st_bbox(ak)

xmin ymin xmax ymax

-176.14247 52.05727 -126.85450 69.35167

Combining bounding boxesCombining bounding boxes
bbox objects can’t be combined directly

Here is how we can create a new bbox encompassing both of our bboxes:

First, we transform our bboxes to sfc objects with st_as_sfc

Then we combine those objects into a new sfc object with st_union

Finally, we retrieve the bbox of that object with st_bbox:

nwa_bbox <- st_bbox(

st_union(

st_as_sfc(st_bbox(wes)),

st_as_sfc(st_bbox(ak))

)

)

Back to our mapBack to our map
We can now use our new bounding box for the map of Western North America:

tm_shape(ak, bbox = nwa_bbox) +

 tm_polygons() +

 tm_shape(wes) +

 tm_polygons() +

 tm_layout(

 title = "Glaciers of Western North America",

 title.position = c("center", "top"),

 title.size = 1.1,

 bg.color = "#fcfcfc",

 inner.margins = c(0.06, 0.01, 0.09, 0.01),

(Truncated code. View the full code at: https://westgrid-slides.netlify.app/r_gis_brc/#/79)

Let’s add a basemapLet’s add a basemap

We will use data from , a public domain map dataset

There are much more fancy options, but they usually involve creating accounts (e.g. with Google)

to access some API

In addition, this dataset can be accessed direction from within R thanks to the packages:

rnaturalearth: provides the functions

rnaturalearthdata: provides the data

Natural Earth

rOpenSci

https://www.naturalearthdata.com/
https://ropensci.org/

Create an sf object with states/provincesCreate an sf object with states/provinces

ne_ stands for "Natural Earth"

states_all <- ne_states(

 country = c("canada", "united states of america"),

 returnclass = "sf"

)

Select relevant states/provincesSelect relevant states/provinces

states <- states_all %>%

 filter(name_en == "Alaska" |

 name_en == "British Columbia" |

 name_en == "Yukon" |

 name_en == "Northwest Territories" |

 name_en == "Alberta" |

 name_en == "California" |

 name_en == "Washington" |

 name_en == "Oregon" |

 name_en == "Idaho" |

(Truncated code. View the full code at: https://westgrid-slides.netlify.app/r_gis_brc/#/83)

Add the basemap to our mapAdd the basemap to our map

What do we need to make sure of �rst?

> Output

st_crs(states) == st_crs(ak)

[1] TRUE

Add the basemap to our mapAdd the basemap to our map

We add the basemap as a 3rd layer

Mind the order! If you put the basemap last, it will cover your data

Of course, we will use our nwa_bbox bounding box again

We will also break tm_polygons into tm_borders and tm_fill for ak and wes in order to colourise

them with slightly different colours

Add the basemap to our mapAdd the basemap to our map

tm_shape(states, bbox = nwa_bbox) +

 tm_polygons(col = "#f2f2f2", lwd = 0.2) +

 tm_shape(ak) +

 tm_borders(col = "#3399ff") +

 tm_fill(col = "#86baff") +

 tm_shape(wes) +

 tm_borders(col = "#3399ff") +

 tm_fill(col = "#86baff") +

 tm_layout(

 title = "Glaciers of Western North America",

(Truncated code. View the full code at: https://westgrid-slides.netlify.app/r_gis_brc/#/86)

tmap stylestmap styles

tmap has a number of styles that you can try

For instance, to set the style to “classic”, run the following before making your map:

Other options are:

"white" (default), "gray", "natural", "cobalt", "col_blind", "albatross", "beaver", "bw",

"watercolor"

tmap_style("classic")

tmap stylestmap styles

To return to the default, you need to run

or

which will reset every tmap option

tmap_style("white")

tmap_options_reset()

Inset mapsInset maps

Now, how can we combine this with our gnp object?

We could add it as an inset of our Western North America map

First, let’s map itFirst, let’s map it

Let’s use the same tm_borders and tm_fill we just used:

tm_shape(gnp) +

 tm_borders(col = "#3399ff") +

 tm_fill(col = "#86baff") +

 tm_layout(

 title = "Glaciers of Glacier National Park",

 title.position = c("center", "top"),

 legend.title.color = "#fcfcfc",

 legend.text.size = 1,

 bg.color = "#fcfcfc",

 inner.margins = c(0.07, 0.03, 0.07, 0.03),

(Truncated code. View the full code at: https://westgrid-slides.netlify.app/r_gis_brc/#/92)

Create an inset mapCreate an inset map

As always, �rst we check that the CRS are the same:

> Output

st_crs(gnp) == st_crs(ak)

[1] FALSE

Create an inset mapCreate an inset map

As always, �rst we check that the CRS are the same:

> Output

AH!

st_crs(gnp) == st_crs(ak)

[1] FALSE

CRS transformationCRS transformation

We need to reproject gnp into the CRS of our other sf objects (e.g. ak):

We can verify that the CRS are now the same:

> Output

gnp <- st_transform(gnp, st_crs(ak))

st_crs(gnp) == st_crs(ak)

[1] TRUE

Inset mapsInset maps
First step:

Add a rectangle showing the location of the GNP map in the main North America map

We need to create a new sfc object from the gnp bbox so that we can add it to our previous map as

a new layer:

gnp_zone <- st_bbox(gnp) %>%

 st_as_sfc()

Inset mapsInset maps
Second step:

Create a tmap object of the main map

Of course, we need to edit the title. Also, note the presence of our new layer:

main_map <- tm_shape(states, bbox = nwa_bbox) +

 tm_polygons(col = "#f2f2f2", lwd = 0.2) +

 tm_shape(ak) +

 tm_borders(col = "#3399ff") +

 tm_fill(col = "#86baff") +

 tm_shape(wes) +

 tm_borders(col = "#3399ff") +

 tm_fill(col = "#86baff") +

 tm_shape(gnp_zone) +

 tm_borders(lwd = 1.5, col = "#ff9900") +

(Truncated code. View the full code at: https://westgrid-slides.netlify.app/r_gis_brc/#/97)

Inset mapsInset maps
Third step:

Create a tmap object of the inset map

We make sure to matching colours & edit the layouts for better readability:

inset_map <- tm_shape(gnp) +

 tm_borders(col = "#3399ff") +

 tm_fill(col = "#86baff") +

 tm_layout(

 legend.show = F,

 bg.color = "#fcfcfc",

 inner.margins = c(0.03, 0.03, 0.03, 0.03),

 outer.margins = 0,

 frame = "#ff9900",

 frame.lwd = 3

(Truncated code. View the full code at: https://westgrid-slides.netlify.app/r_gis_brc/#/98)

Inset mapsInset maps

Final step:

Combine the two tmap objects

We print the main map & add the inset map with grid::viewport:

main_map

print(inset_map, vp = viewport(0.41, 0.26, width = 0.5, height = 0.5))

Mapping a subset of the dataMapping a subset of the data

Mapping a subset of the dataMapping a subset of the data

To see the retreat of the ice, we need to zoom in

Let’s focus on a single glacier: Agassiz Glacier

Map of the Agassiz GlacierMap of the Agassiz Glacier

Select the data points corresponding to the Agassiz Glacier:

ag <- gnp %>% filter(glacname == "Agassiz Glacier")

Map of the Agassiz GlacierMap of the Agassiz Glacier

tm_shape(ag) +

 tm_polygons() +

 tm_layout(

 title = "Agassiz Glacier",

 title.position = c("center", "top"),

 legend.position = c("left", "bottom"),

 legend.title.color = "#fcfcfc",

 legend.text.size = 1,

 bg.color = "#fcfcfc",

 inner.margins = c(0.07, 0.03, 0.07, 0.03),

(Truncated code. View the full code at: https://westgrid-slides.netlify.app/r_gis_brc/#/103)

Not great …

Map based on attribute variablesMap based on attribute variables

tm_shape(ag) +

 tm_polygons("year", palette = "Blues") +

 tm_layout(

 title = "Agassiz Glacier",

 title.position = c("center", "top"),

 legend.position = c("left", "bottom"),

 legend.title.color = "#fcfcfc",

 legend.text.size = 1,

 bg.color = "#fcfcfc",

 inner.margins = c(0.07, 0.03, 0.07, 0.03),

(Truncated code. View the full code at: https://westgrid-slides.netlify.app/r_gis_brc/#/105)

Using ggplot2 instead of tmapUsing ggplot2 instead of tmap
As an alternative to tmap, ggplot2 can plot maps with the geom_sf function:

The package ggspatial adds a lot of functionality to ggplot2 for spatial data

ggplot(ag) +

 geom_sf(aes(fill = year)) +

 scale_fill_brewer(palette = "Blues") +

 labs(title = "Agassiz Glacier") +

 annotation_scale(location = "bl", width_hint = 0.4) +

 annotation_north_arrow(location = "tr", which_north = "true",

 pad_x = unit(0.75, "in"), pad_y = unit(0.5, "in"),

 style = north_arrow_fancy_orienteering) +

 theme_bw() +

 theme(plot.title = element_text(hjust = 0.5))

Lunch breakLunch break

Faceted mapsFaceted maps

Faceted map of the retreat of AgassizFaceted map of the retreat of Agassiz

tm_shape(ag) +

 tm_polygons(col = "#86baff") +

 tm_layout(

 main.title = "Agassiz Glacier",

 main.title.position = c("center", "top"),

 main.title.size = 1.2,

 legend.position = c("left", "bottom"),

 legend.title.color = "#fcfcfc",

 legend.text.size = 1,

 bg.color = "#fcfcfc",

(Truncated code. View the full code at: https://westgrid-slides.netlify.app/r_gis_brc/#/111)

Animated mapsAnimated maps

Animated map of the Retreat of AgassizAnimated map of the Retreat of Agassiz

First, we need to create a tmap object with facets:

agassiz_anim <- tm_shape(ag) +

 tm_polygons(col = "#86baff") +

 tm_layout(

 title = "Agassiz Glacier",

 title.position = c("center", "top"),

 legend.position = c("left", "bottom"),

 legend.title.color = "#fcfcfc",

 legend.text.size = 1,

 bg.color = "#fcfcfc",

 inner.margins = c(0.08, 0, 0.08, 0),

(Truncated code. View the full code at: https://westgrid-slides.netlify.app/r_gis_brc/#/114)

Animated map of the Retreat of AgassizAnimated map of the Retreat of Agassiz

Then we can pass that object to tmap_animation:

tmap_animation(

 agassiz_anim,

 filename = "ag.gif",

 dpi = 300,

 inner.margins = c(0.08, 0, 0.08, 0),

 delay = 100

)

(View the animation at: https://westgrid-slides.netlify.app/r_gis_brc/#/116)

Map of ice thickness of AgassizMap of ice thickness of Agassiz
Now, let’s map the estimated ice thickness on Agassiz Glacier

This time, we use tm_raster:

tm_shape(ras) +

 tm_raster(title = "") +

 tm_layout(

 title = "Ice thickness (m) of Agassiz Glacier",

 title.position = c("center", "top"),

 legend.position = c("left", "bottom"),

 legend.bg.color = "#ffffff",

 legend.text.size = 1,

 bg.color = "#fcfcfc",

 inner.margins = c(0.07, 0.03, 0.07, 0.03),

(Truncated code. View the full code at: https://westgrid-slides.netlify.app/r_gis_brc/#/117)

Combining with Randolph dataCombining with Randolph data

As always, we check whether the CRS are the same:

> Output

We need to reproject ag (remember that it is best to avoid reprojecting raster data):

st_crs(ag) == st_crs(ras)

[1] FALSE

ag %<>% st_transform(st_crs(ras))

Combining with Randolph dataCombining with Randolph data
The retreat & ice thickness layers will hide each other (the order matters!)

One option is to use tm_borders for one of them, but we can also use transparency (alpha)

We also adjust the legend:

tm_shape(ras) +

 tm_raster(title = "Ice (m)") +

 tm_shape(ag) +

 tm_polygons("year", palette = "Blues", alpha = 0.2, title = "Contour") +

 tm_layout(

 title = "Ice thickness (m) and retreat of Agassiz Glacier",

 title.position = c("center", "top"),

 legend.position = c("left", "bottom"),

 legend.bg.color = "#ffffff",

 legend.text.size = 0.7,

(Truncated code. View the full code at: https://westgrid-slides.netlify.app/r_gis_brc/#/120)

Refining raster mapsRefining raster maps

Let’s go back to our ice thickness map:

We can change the palette to blue with tm_raster(palette = "Blues"):

We can create a more suitable interval scale:

First, let’s see what the maximum value is:

> Output

Then we can set the breaks with tm_raster(breaks = seq(0, 80, 5))

global(ras, "max")

max

RGI60-02.16664_thickness 70.10873

We can create a more suitable interval scale:

We also need to tweak the layout, legend, etc.:

tm_shape(ras) +

 tm_raster(title = "", palette = "Blues", breaks = seq(0, 80, 5)) +

 tm_layout(

 title = "Ice thickness (m) of Agassiz Glacier",

 title.position = c("center", "top"),

 legend.position = c("left", "bottom"),

 legend.bg.color = "#ffffff",

 legend.text.size = 0.7,

 bg.color = "#fcfcfc",

 inner.margins = c(0.07, 0.03, 0.07, 0.03),

(Truncated code. View the full code at: https://westgrid-slides.netlify.app/r_gis_brc/#/126)

We can create a more suitable interval scale:

Or we can use a continuous colour scheme with tm_raster(style = "cont"):

Other ways to add a basemapOther ways to add a basemap

Basemap with ggmapBasemap with ggmap

ggmap is a powerful package, but Google now requires an API key obtained through

registration

basemap <- get_map(

 bbox = c(

 left = st_bbox(ag)[1],

 bottom = st_bbox(ag)[2],

 right = st_bbox(ag)[3],

 top = st_bbox(ag)[4]

),

 source = "osm"

)

Basemap with basemapsBasemap with basemaps

The package basemaps allows to download open source basemap data from several sources, but

those cannot easily be combined with sf objects

This plots a satellite image of the Agassiz Glacier:

basemap_plot(ag, map_service = "esri", map_type = "world_imagery")

Satellite image of the Agassiz GlacierSatellite image of the Agassiz Glacier

Tiled web maps with Leaflet JSTiled web maps with Leaflet JS

mapviewmapview

mapview(gnp)

CartoDB.Positron OpenTopoMap

OpenStreetMap Esri.WorldImagery

mapviewmapview

tmaptmap

So far, we have used the plot mode of tmap. There is also a view mode which allows interactive

viewing in a browser through

Change to view mode:

you can also toggle between modes with ttm

Re-plot the last map we plotted with tmap:

Lea�et

tmap_mode("view")

tmap_last()

https://leafletjs.com/

leafletleaflet

leaflet creates a map widget to which you add layers

map <- leaflet()

addTiles(map)

Spatial data analysisSpatial data analysis

ResourcesResources

Maybe very disappointingly, I am leaving you to fend on your own here

But here are some great resources on the topic that should get you started

(& maybe I’ll give another workshop on the subject some time?)

R companion to Geographic Information Analysis

Spatial data analysis

https://rspatial.org/terra/rosu/index.html
https://rspatial.org/terra/analysis/index.html

Image creditsImage credits
Szűcs Róbert, Grasshopper Geography

Questions?Questions?

