
Use left/right keys to change slide

Back to Webinar Page 

Git & GitHubGit & GitHub

Effective Versioning & TeamworkEffective Versioning & Teamwork

https://westgrid-cli.netlify.app/workshops/git_m2pi/

Why Git?Why Git?

Why version control?Why version control?

from Geek&Poke

http://geek-and-poke.com/

Why version control?Why version control?

from PhD

http://phdcomics.com/

Which version control system?Which version control system?

Which version control system?Which version control system?

from xkcd.com

https://xkcd.com/

Git configurationGit configuration

User identityUser identity

ExampleExample

git config --global user.name "<Your Name>"
git config --global user.email "<your@email>"

git config --global user.name "John Doe"
git config --global user.email "john.doe@gmail.com"

Text editorText editor

Example for nanoExample for nano

git config --global core.editor "<text-editor>"

git config --global core.editor "nano"

Line endingLine ending

macOS, Linux, or WSLmacOS, Linux, or WSL

WindowsWindows

git config --global core.autocrlf input

git config --global core.autocrlf true

List settingsList settings

git config --list

DocumentationDocumentation

Internal documentationInternal documentation

Man pagesMan pages

ExampleExample

git <command> --help
git help <command>
man git-<command>

git commit --help
git help commit
man git-commit

Internal documentationInternal documentation

Man pagesMan pages

Useful keybindings when you are in the pagerUseful keybindings when you are in the pager

git <command> --help
git help <command>
man git-<command>

SPACE scroll one screen down
b scroll one screen up
q quit

Internal documentationInternal documentation

Command optionsCommand options

ExampleExample

git <command> -h

git commit -h

Online documentationOnline documentation
Of�cial

Open source

Courses & workshopsCourses & workshops

the

Q & AQ & A

Git manual

Pro Git book

WestGrid's Git workshops

last summer WestGrid Git course

last fall WestGrid Git course

Software Carpentry Git lesson

Stack Over�ow's Git tag

https://git-scm.com/docs
https://git-scm.com/book/en/v2
https://westgrid-cli.netlify.app/workshops/
https://wgschool.netlify.app/git/
https://autumnschool.netlify.app/git/
http://swcarpentry.github.io/git-novice/
https://stackoverflow.com/questions/tagged/git

Understanding GitUnderstanding Git

Project historyProject history

Git saves the history of a project as a series of snapshots

Project historyProject history

Those snapshots are called commits

Project historyProject history

Commits are identi�ed by unique hash

Project historyProject history

Each commit contains these metadata:

- author

- date and time

- the hash of parent commit(s)

- a message

Project historyProject history

As soon as you create the �rst commit, a pointer called a branch is created
and it points to that commit. By default, that �rst branch is called main

Project historyProject history

Another pointed (HEAD) points to the branch main

HEAD indicates where we are in the project history

Recording historyRecording history

As you create more commits, the history grows …

Recording historyRecording history

… and the pointers HEAD and main automatically move to the last commit

Recording historyRecording history

For simplicity, the diagrams can be simpli�ed this way

Displaying the commit historyDisplaying the commit history

As a listAs a list

git log --oneline

Displaying the commit historyDisplaying the commit history

Making it more readableMaking it more readable

git log \
 --graph \
 --date-order \
 --date=short \
 --pretty=format:'%C(cyan)%h %C(blue)%ar %C(auto)%d'`
 `'%C(yellow)%s%+b %C(magenta)%ae'

Displaying the commit historyDisplaying the commit history

As a graphAs a graph

git log --graph

Displaying the commit historyDisplaying the commit history

As a graph showing all commitsAs a graph showing all commits

git log --graph --all

How does Git work?How does Git work?

The three trees of GitThe three trees of Git

A useful representation of Git’s functioning is to imagine three �le trees

Making changes to the working treeMaking changes to the working tree

When you work on your project, your working tree changes

Staging changesStaging changes

You organize your next snapshot by picking and choosing some changes

git add <what-you-want-to-commit-next>

Staging changesStaging changes

Those changes move to the index or staging area

Creating a commitCreating a commit

Finally you create a commit with what is in the staging area

git commit -m "<message>"

Creating a commitCreating a commit

Finally you create a commit with what is in the staging area

RemotesRemotes

What are remotes?What are remotes?
Copies of a project & its history

Anywhere, including on external drive or on the same machine as the project

Often on a different machine to serve as backup or on a network (e.g.
internet) to serve as syncing hub for collaborations

Popular online Git repository managers & hosting services:

GitHub

GitLab

Bitbucket

https://github.com/
https://gitlab.com/
https://bitbucket.org/

CollaborationCollaboration

3 situations3 situations
You create a project on your machine & want others to contribute to it (1)

You want to contribute to a project started by others & …

 … you have write access to it (2)

 … you do not have write access to it (3)

(1) You start the project(1) You start the project

Create a remote on GitHubCreate a remote on GitHub

1. Create an empty repository on GitHub1. Create an empty repository on GitHub

Go to , login, & go to your home page

Look for the Repositories tab & click the green New button

Enter the name you want for your repo, without spaces

Make the repository public or private

https://github.com

https://github.com/

Create a remote on GitHubCreate a remote on GitHub
2. Link empty repository to your repo2. Link empty repository to your repo

Click on the Code green drop-down button, select SSH

 or HTTPS & copy the address

In command line, cd inside your project & add the remote

<remote-name> is a convenience name to identify that remote. You can choose

any name, but since Git automatically call the remote origin when you

clone a repo, it is common practice to use origin as the name for the �rst

remote

if you have set SSH for

your GitHub account

git remote add <remote-name> <remote-address>

https://docs.github.com/en/free-pro-team@latest/github/authenticating-to-github/connecting-to-github-with-ssh

Create a remote on GitHubCreate a remote on GitHub

Example (using an SSH address):

Example (using an HTTPS address):

git remote add origin git@github.com:<user>/<repo>.git

git remote add origin https://github.com/<user>/<repo>.git

Create a remote on GitHubCreate a remote on GitHub

If you are working alone on this project & only wanted to have a remote for
backup, you are set

If you don’t want to grant others write access to the project & only accept
contributions through pull requests, you are also set

If you want to grant your collaborators write access to the project however,
you need to add them to it

Invite collaboratorsInvite collaborators

Go to your GitHub project page

Click on the Settings tab

Click on the Manage access section on the left-hand side (you will be

prompted for your GitHub password)

Click on the Invite a collaborator green button

Invite your collaborators with one of their GitHub user name, their email

address, or their full name

(2) Write access to project(2) Write access to project

Clone projectClone project

cd to location where you want your local copy, then

This sets the project as a remote to your new local copy & that remote is
automatically called origin

Without <local-name>, the repo will have the name of the last part of the

remote address

git clone <remote-address> <local-name>

(3) No write access to project(3) No write access to project

Collaborate without write accessCollaborate without write access

�. Fork the project

�. Clone your fork on your machine

�. Add the initial project as a second remote & call it upstream

Working with remotesWorking with remotes

Get information on remotesGet information on remotes

List remotes:

List remotes with their addresses:

git remote

git remote -v

Get information on remotesGet information on remotes

Get more information on a remote:

Example:

git remote show <remote-name>

git remote show origin

Manage remotesManage remotes
Rename a remote:

Delete a remote:

Change the address of a remote:

git remote rename <old-remote-name> <new-remote-name>

git remote remove <remote-name>

git remote set-url <remote-name> <new-url> [<old-url>]

Get data from a remoteGet data from a remote

If you collaborate on a project, you have to get the data added by your
teammates to keep your local project up to date

To download new data from a remote, you have 2 options:

git fetch

git pull

Fetch changesFetch changes

Fetching downloads the data from a remote that you don’t already have in
your local version of the project

The branches on the remote are now accessible locally as <remote-
name>/<branch>. You can inspect them or you can merge them into your

local branches

Example:

git fetch <remote-name>

git fetch origin

Pull changesPull changes

Pulling fetches the changes & merges them onto your local branches

Example:

If your branch is already tracking a remote branch, you can omit the
arguments

git pull <remote-name> <branch>

git pull origin main

git pull

Push to a remotePush to a remote

Uploading data to the remote is called pushing

Example:

git push <remote-name> <branch-name>

git push origin main

Push to a remotePush to a remote

You can set an upstream branch to track a local branch with the -u �ag

Example:

From now on, all you have to run when you are on main is:

git push -u <remote-name> <branch-name>

git push -u origin main

git push

Submit a pull requestSubmit a pull request

�. Pull from upstream to update your local project

�. Create & checkout a new branch

�. Make & commit your changes on that branch

�. Push that branch to your fork (i.e. origin — remember that you do not

have write access to upstream)

�. Go to the original project GitHub’s page & open a pull request

Questions?Questions?

by jscript

https://www.redbubble.com/people/jscript/shop#profile

