Back to Webinar Page 1

Git € GitHub

Effective Versioning ¢ Teamwork

Vl;:'

*@ VEST:qp

Use left/right keys to change slide

https://westgrid-cli.netlify.app/workshops/git_m2pi/

Why version control?

SIMPLY EXPLAINED

ajodgxaab

budget estimation final vl.l-ow.xlsx
OR
budget estimation last version 2.xlsx
OR
budget estimation 2012 10 25 ready new.xlsx ?

VERSION CONTROL
from Geek&Poke

http://geek-and-poke.com/

Why version control?

“EINAL doc

? 7
INAL _rev.6.COMMENTGS. d FINAL _rev.8.commentss.
FINAL —rev.6.COMMENTS. doc CORRECTIONS. doc

) by
FINAL _rev.18.commente?. ENAL_rev.22.commentsi9.
corrections?.MORE.30.doc ¢orrections.|0. #@$%WHYDID

WWW.PHDCOMICS.COM

from PhD

http://phdcomics.com/

Which version control system?

Git @ Apache Subversion Mercurial @ Concurrent Versions System

Which version control system?

THISIS GIT. IT TRACKS COLLABORATIVE. LIORK
ON PROTECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

COOL. HOU DO LEVSE IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE THEM To SYNC DR
IF YOU GET ERRORS, SAVE. YOUR WORK
ELSEWHERE, DELETE THE. PROJECT,
AND DOUNLOAD A FRESH COPY.

from xkcd.com

https://xkcd.com/

Git configuration

User identity

git config --global user.name "<Your Name>"
git config --global user.email "<your@email>"

Example

git config --global user.name "John Doe"
git config --global user.email "john.doe@gmail.com"

Text editor

git config --global core.editor '"<text-editor>"

Exomple for nono

git config --global core.editor "nano"

Line ending

macOS, Linux, or WSL

git config --global core.autocrlf input

Windows

git config --global core.autocrlf true

List settings

git config --1list

Documentation

Internal documentation
Mon pages

git <command> --help
git help <command>
man git-<command>

Exaomple

git commit --help
git help commit
man git-commit

Internal documentation
Man poages

git <command> --help
git help <command>
man git-<command>

Useful keybindings when you are in the pager

SPACE scroll one screen down
b scroll one screen up
q quit

Internal documentation

Command options

git <command> -h

Example

git commit -h

Online documentation

o Official Git manual
o Open source Pro Git book

Courses € workshops

o WestGrid's Git workshops

o last summer WestGrid Git course
o last fall WestGrid Git course

o the Software Carpentry Git lesson

Q€A

o Stack Overflow's Git tag

https://git-scm.com/docs
https://git-scm.com/book/en/v2
https://westgrid-cli.netlify.app/workshops/
https://wgschool.netlify.app/git/
https://autumnschool.netlify.app/git/
http://swcarpentry.github.io/git-novice/
https://stackoverflow.com/questions/tagged/git

Understanding Git

Project history

Git saves the history of a project as a series of snapshots

Project history

Those snapshots are called commits

24duu’i 31fukvl 3f55tgy yht7831

Snapshot Snapshot Snapshot Snapshot

Project history

Commits are identified by unique hash

24duui 3f55tgy yht7831

Shapshot SHET (] Snapshot Snapshot

Project history

Each commit contains these metadata:
- author

- date and time

- the hash of parent commit(s)

- 4 Inessage

Project history

As soon as you create the first commit, a pointer called a branch is created
and it points to that commit. By default, that first branch is called main

24duu7i

Snapshot

Project history

Another pointed (HEAD) points to the branch main
HEAD indicates where we are in the project history

24duu7i

Snapshot

Recording history

As you create more commits, the history grows ...

24duu?i 31fukvl

Snapshot Snapshot

Recording history

... and the pointers HEAD and main automatically move to the last commit

24duu7i yht7831

Snapshot Snapshot Snapshot Snapshot

Recording history

For simplicity, the diagrams can be simplified this way

Displaying the commit history

As a list

git log --oneline

Displaying the commit history

Maoking it more readable

git log \
--graph \
--date-order \
--date=short \
--pretty=format: '%C(cyan)%h %C(blue)%ar %C(auto)%d'"
" '%C(yellow)%s%tb %C(magenta)%ae'

Displaying the commit history

As a graph

git log --graph

Displaying the commit history

As a groph showing all commits

git log --graph --all

How does Git work?

The three trees of Git

A usetful representation of Git’s functioning is to imagine three file trees

Making changes to the working tree

When you work on your project, your working tree changes

Working directory

N

Staging changes

You organize your next snapshot by picking and choosing some changes

git add <what-you-want-to-commit-next>

Staging changes

Those changes move to the index or staging area

Working directory

|

File v1 File v1

Creating a commit

Finally you create a commit with what is in the staging area

git commit -m "<message>"

Creating a commit

Finally you create a commit with what is in the staging area

Working directory

| PNESE

File v1 File v1 File v1

Remotes

Whoat are remotes?

Copies of a project & its history

Anywhere, including on external drive or on the same machine as the project

Often on a different machine to serve as backup or on a network (e.g.
internet) to serve as syncing hub for collaborations

Popular online Git repository managers & hosting services:

o GitHub
o GitLab
o Bitbucket

https://github.com/
https://gitlab.com/
https://bitbucket.org/

Collaboration

3 situations

o You create a project on your machine & want others to contribute to it (1)

o You want to contribute to a project started by others & ...

... you have write access to it (2)

.. you do not have write access to it (3)

(1) You start the project

Create a remote on GitHub

1. Create an empty repository on GitHub

Go to https://github.com , login, & go to your home page

Look for the

Repositories

tab & click the green

New

button

Enter the name you want for your repo, without spaces

Make the repository public or private

https://github.com/

Create a remote on GitHub

2. Link empty repository to your repo

Click on the

Code

green drop-down button, select SSH if you have set SSH for

your GitHub account or HTTPS & copy the address

In command line, cd inside your project & add the remote

git remote add <remote-name> <remote-address>

<remote-name>|1s @ convenience name to identify that remote. You can choose

any name, but since Git automatically call the remote origin when you

clone a repo, it is common practice to use origin as the name for the first

remote

https://docs.github.com/en/free-pro-team@latest/github/authenticating-to-github/connecting-to-github-with-ssh

Create a remote on GitHub

| Example (using an SSH address):

git remote add origin git@github.com:<user>/<repo>.git

I Example (using an HTTPS address):

git remote add origin https://github.com/<user>/<repo>.git

Create a remote on GitHub

If you are working alone on this project & only wanted to have a remote for
backup, you are set

If you don’t want to grant others write access to the project & only accept
contributions through pull requests, you are also set

If you want to grant your collaborators write access to the project however,
you need to add them to it

Invite collaborators

Go to your GitHub project page

Click on the [sett ngs tab

Click on the [Manage access|section on the left-hand side (you will be

prompted for your GitHub password)

Click on the ‘I nvite a collaborato r‘ green button

Invite your collaborators with one of their GitHub user name, their email
address, or their full name

(2) Write access to project

Clone project

cd to location where you want your local copy, then

git clone <remote-address> <local-name>

This sets the project as a remote to your new local copy & that remote is
automatically called origin

Without <local-name>, the repo will have the name of the last part of the
remote address

(3) No write access to project

Collaborate without write access

1. Fork the project
2. Clone your fork on your machine

3. Add the initial project as a second remote & call it upstream

Working with remotes

Get information on remotes

List remotes:

git remote

List remotes with their addresses:

git remote -v

Get information on remotes

Get more information on a remote:

git remote show <remote-name>

I Example:

git remote show origin

Manage remotes

Rename a remote:

git remote rename <old-remote-name> <new-remote-name>

Delete a remote:

git remote remove <remote-name>

Change the address of a remote:

git remote set-url <remote-name> <new-url> [<old-url>]

Get data from a remote

If you collaborate on a project, you have to get the data added by your
teammates to keep your local project up to date

To download new data from a remote, you have 2 options:

o git fetch

o git pull

Fetch changes

Fetching downloads the data from a remote that you don’t already have in
your local version of the project

git fetch <remote-name>

The branches on the remote are now accessible locally as <remote-
name>/<branch>. You can inspect them or you can merge them into your
local branches

I Example:

git fetch origin

Pull changes

Pulling tetches the changes & merges them onto your local branches

git pull <remote-name> <branch>

I Example:

git pull origin main

If your branch is already tracking a remote branch, you can omit the
arguments

git pull

Push to a remote

Uploading data to the remote is called pushing

git push <remote-name> <branch-name>

I Example:

git push origin main

Push to a remote

You can set an upstream branch to track a local branch with the -u flag

git push -u <remote-name> <branch-name>

I Example:

git push -u origin main

From now on, all you have to run when you are on main is:

git push

Submit a pull request

1. Pull from upstream to update your local project
2. Create & checkout a new branch
3. Make & commit your changes on that branch

4. Push that branch to your fork (i.e. origin — remember that you do not

have write access to upstream)

5. Go to the original project GitHub’s page & open a pull request

Questions?

IN CASE OF FIRE ¢

o git commit

29 git push
_31 git -tf out

by jscript

https://www.redbubble.com/people/jscript/shop#profile

